You can combine SQL and Python for advanced data manipulation in your day-to-day workflows. This post covers four examples of this in practice: ETL processes using dbt and Snowpark, A/B test analysis, customer churn prediction, and building interactive dashboards. We also discuss how combining SQL's data retrieval capabilities with Python's advanced processing and visualization tools can significantly improve efficiency and insights in data-driven tasks, while also introducing Polars as a high-performance alternative to Pandas for handling large datasets.